目前研究导致血小板治疗无反应因素有很多,如抗血小板药物治疗抵抗(常见于糖尿病、肥胖等)、检测体外血小板功能实验室方法不同、细胞色素P(cytochromeP,CYP)酶活性个体差异以及遗传基因多态性等[3]。我们将从以下几个方面对血小板“治疗无反应”进行讨论。
崔婵娟等丨检验医学
01
体外血小板功能检测方法
血小板功能检测主要是测定患者血小板激活所达到的程度。目前用于体外检测血小板功能方法有很多,如比浊法血小板聚集测定、电阻法血小板聚集测定、血栓弹力图以及流式细胞术检测血管磷蛋白(vasodilatorstimulatedphosphoprotien,VASP)磷酸化等。其中,检测VASP磷酸化方法是一种专门针对P2Y12受体拮抗剂抑制血小板活化程度的检测方法,特异性高。以下主要对目前常用的电阻法血小板聚集测定及特异性高的流式细胞术VASP磷酸化检测方法进行讨论。
1
电阻法血小板聚集测定
电阻法检测血小板聚集度是应用电阻抗原理检测全血中血小板聚集程度。通过二磷酸腺苷(adenosinediphosphate,ADP)作为诱导剂来检测P2Y12受体抑制程度。其中,多电极聚集仪可用曲线下面积(areaundercurve,AUC)来描述电阻增加轨迹。电阻是通过2个互相独立电极间血小板黏附和聚集程度来测量,其电阻大小表示方式可用聚合单元分钟或单位“U”表示[4]。该法重复性好,变异系数6%[5]。未服用P2Y12受体拮抗剂的健康人,ADP诱导血小板聚集的正常值为46U;服用P2Y12受体拮抗剂患者,ADP诱导血小板聚集46U时,预测支架内血栓形成灵敏度最高[6,7]。
但有报道指出,该法检测样本是应用枸橼酸盐抗凝全血,钙离子较生理状态下显著减少,其中全血中钙离子浓度可从0.94~1.33mmol/L迅速降至40~50μmol/L[8]。由于血小板内外钙离子流动是血小板表面受体信号传导和血小板释放等重要反应发生的必要条件,因此在体内和体外钙离子浓度发生巨大差异时,体外ADP诱导剂并不能触发血小板二次放大聚集、颗粒释放及凝血酶对血小板强烈活化作用。所以,在体外极低钙离子浓度血液样本中进行血小板活性检测时,仅检测到血小板部分聚集功能,并不能真实反映体内血小板激活在血栓形成危险中的作用,甚至可能是一种“歪曲”的反应[8,9]。
体外检测血小板激活时,枸橼酸抗凝血中钙离子浓度低于临界值μmol/L,此时凝血酶没有形成[10],只是用相对较弱的外源激活剂,如ADP、花生四烯酸等来诱导血小板聚集,并没有反映凝血过程中形成凝血酶对血小板的激活效应。凝血酶是最有效血小板活化剂,主要是通过蛋白酶活化受体1和4快速实现血小板活化。有研究指出,即使在阿司匹林和氯吡格雷双联抗血小板治疗时,凝血酶仍能实现血小板活化[11]。GREMMEL等[12]对凝血酶形成与血小板聚集度之间关系进行研究。凝血酶形成试验主要是在乏血小板血浆中进行,通过凝血酶形成曲线来描述,该试验结果显示凝血酶形成曲线峰值与电阻法检测血小板聚集度间无相关性(P=0.02),这暗示在极低钙离子浓度样本中,目前所用检测体外血小板活性方法并不能很好地反映体内真实凝血酶与血小板之间的作用。
2
VASP的磷酸化测定
VASP磷酸化检测P2Y12受体拮抗剂原理见图1,前列腺素E1(prostaglandinE1,PGE1)与血小板表面磷酸肌醇(inositolphosphate,IP)受体结合,信号通过激活Gs蛋白和腺苷环化酶(adenosinecyclase,AC)将三磷酸腺苷(adenosinetriphosphate,ATP)转化成环磷酸单腺苷(cyclicadenosinemonophosphate,cAMP),再通过激活蛋白激酶A(proteinkinaseA,PKA)将VASP转化为磷酸化VASP[13],磷酸化VASP可使血小板处于静息状态。ADP是血小板激活剂,当ADP与血小板表面P2Y12受体结合时激活Gi偶联蛋白,
抑制PGE1诱导AC信号传导,使VASP磷酸化水平降低,导致糖蛋白(glycoproteinⅡb/Ⅲa,GPⅡb/Ⅲa)受体活化,从而使血小板形成牢固聚集。因此,当PGE1和ADP同时存在时,VASP磷酸化程度与P2Y12受体拮抗程度呈正比,可通过流式细胞术测量磷酸化VASP平均荧光强度(medianfluorescenceintensity,MFI)来计算P2Y12受体拮抗药物拮抗程度。计算公式:血小板反应指数(plateletreactivityindex,PRI)=(MFIPGE1-MFIPGE1+ADP/MFIPGE1)×%,临界值为50%。PRI值越小,表明P2Y12受体拮抗药物拮抗程度越强。
由检测磷酸化VASP原理可知,该法是评估P2Y12受体抑制程度特异方法,且重复性好,有研究表明即使样本放置24h再检测,变异系数仅约5%[14]。FRERE等[15]研究显示VASP方法检测阳性结果对应相对比值比(oddsratio,OR)值为1.04~11.18,预测支架内血栓形成或严重不良心血管事件灵敏度为70%~%[16]。最近,有研究提出可将PRI临界值设为60%,以提高检测特异度[17,18],但目前缺乏有力的临床证据。对于临界值争议,可进一步进行较大规模试验来验证,以便于VASP试验能更好地应用于临床。
02
遗传因素
自氯吡格雷药物出现后,大量研究表明氯吡格雷和阿司匹林双联抗血小板治疗较阿司匹林单药效果好,目前氯吡格雷已被广泛用于ACS和/或冠状动脉支架植入患者中[19],仍有部分患者对药物治疗无反应[20]。近年,关于氯吡格雷代谢活性相关遗传因素研究越来越多。
氯吡格雷是一种前体药,主要通过2种途径代谢[21]。一种是血浆酯酶调节途径代谢,其产物是非活性羧基代谢物,约占循环代谢物85%;另一种是经肝CYP代谢途径,其产物是活性含硫代谢产物,占循环代谢产物的15%。有活性硫醇代谢物通过二硫键桥与P2Y12受体结合,导致不可逆地抑制ADP与P2Y12受体结合。
多种CYP酶参与了氯吡格雷肝脏代谢途径,如CYP2B6、CYP2C19和CYP3A等,其中CYP2C19与氯吡格雷抗血小板反应密切相关。CYP2C19基因高度多态性,在已知等位基因中,*2、*3和*17在人群中最普遍。*17等位基因编码功能增强型酶,*2和*3等位基因编码功能减低型酶,分别为CYP2C19基因第5外显子GA和第4外显子GA的点突变[22]。功能增强型等位基因*17在高加索人和非洲裔美国人中更常见,而功能减低型等位基因*2和*3在亚洲人中更普遍,见表1。CYP2C19功能减低可使氯吡格雷转化为活性代谢产物能力减弱,导致氯吡格雷抗血小板的效应降低。
CYP2C19基因型与氯吡格雷抗血小板反应性及与临床事件的关系,目前报道尚不一致。SORICH等[24]研究表明,携带1个或2个CYP2C19功能减低型基因患者,氯吡格雷对血小板抑制水平减低,且临床缺血事件、心血管因素导致死亡风险增加。但BHATT等[25]研究显示,在氯吡格雷治疗稳定型患者中,CYP2C19基因型与缺血事件没有关系。由此可见,CYP2C19基因多态性并不能解释所有氯吡格雷抗血小板治疗无反应现象,有报道指出,CYP2C19基因多态性可能只解释约12%原因[23]。因此,在分析CYP2C19基因多态性时,应与其他临床因素相结合,如肥胖、肾功能衰竭、糖尿病、年龄、炎症、ACS等[26,27,28]。SILLER-MATULA等[29]采用回归分析法研究影响血小板反应性及临床缺血事件发生的因素,结果显示,ACS、糖尿病、CYP2C19*2和CYP2C19*17突变是血小板高反应性(highon-treatmentplateletreactivity,HTPR)独立预测指标,但不能预测严重不良心血管事件(majoradversecardiovascularevent,MACE);而年龄75岁和HTPR对MACE有很强的预测性,见图2、图3。
关于CYP2C19基因对氯吡格雷活性代谢过程研究很多,但CYP2C19基因突变是否会对血小板本身功能及其他因素产生影响尚不清楚。日本一项研究结果显示,CYP2C19功能减低型基因组患者PRI及血小板聚集率均高于非功能减低型基因组患者,而其他指标如血浆血管性血友病因子、血浆血管性血友病因子裂解酶、P-选择素、白细胞介素6、细胞间黏附分子1、高敏C反应蛋白等在2个组中均无明显差异,这表明CYP2C19基因突变只是通过影响氯吡格雷代谢过程来影响血小板反应性[30]。
此外,近年来还出现了关于羧酸酯酶1(carboxylesterase1,CES1)研究,CES1是氯吡格雷水解为非活性代谢产物过程中的酶,CES1c.GA突变可使水解活性减低,导致活性代谢途径产物增加,从而可能增加氯吡格雷拮抗血小板作用[31,32]。影响血小板反应性因素还有很多。我们在进行遗传因素分析时,不仅要考虑基因与基因之间的相互作用,还应与临床实际情况相结合,进行综合评价。
03
临床疾病影响
大量研究表明,广泛使用P2Y12受体抑制剂氯吡格雷,在药效学方面存在个体差异[20,33]。药效学改变明显增加氯吡格雷治疗患者血小板高反应现象的发生,同时也增加PCI术后缺血并发症的风险[20,33]。
一些研究指出,肥胖可导致药效学改变,是血小板高反应预测指标[34,35]。DARLINGTON等[36]对肥胖患者进行研究,结果显示在冠心病治疗急性期,标准剂量普拉格雷较高剂量氯吡格雷药效更佳。还有一些研究指出,糖尿病患者体内高糖炎症状态、氧化应激状态、血浆儿茶酚胺增加以及胰岛素抵抗等也会影响氯吡格雷药效,使P2Y12受体介导信号上调,从而影响血小板的反应性[37]。
ANGIOLILLO等[20]研究表明在糖尿病患者中,标准剂量普拉格雷治疗较高剂量氯吡格雷治疗发生血小板高反应性明显降低。FERREIRO等[38]在2型糖尿病行PCI患者中将2倍剂量氯吡格雷抗血小板治疗与标准剂量氯吡格雷联合西洛他唑治疗进行比较,结果显示西洛他唑不受CYP2C19基因突变及人口特征影响,且西洛他唑是磷酸二酯酶抑制剂,通过腺苷、前列腺素、一氧化氮等信号影响血小板、内皮细胞、血管平滑肌细胞及炎症级联反应,使糖尿病患者临床受益[39];相比之下,如只将氯吡格雷剂量加倍,由于受CYP2C19基因影响[40],其治疗效果不如标准剂量联合西洛他唑抗血小板治疗组。
目前,对糖尿病及肥胖患者冠心病治疗方面尚未达成共识,这也是临床医生所面临的一个挑战。未来还需进行大规模多中心更有说服力的研究;对于新型P2Y12受体抑制剂,如普拉格雷或替卡格雷的应用,需注意出血事件发生的风险;同时还要评估成本效益,需平衡药物相关花费、事件相关花费及血小板功能检测相关花费三者之间的关系。
04
小结与展望
抗血小板药物“治疗无反应”近些年来已成为一个频繁出现的词。体外血小板功能检测的实验室方法是否能反映患者体内血栓形成的真实状态令人质疑。目前尚没有一种检测方法可全面评估血小板在体内血栓形成中的作用,新出现检测方法仍需进一步验证。此外,遗传基因多态性及其他临床疾病也会影响抗血小板药物的反应性,尤其对于糖尿病和肥胖患者的冠心病治疗,是目前很多临床医生所面临的挑战,这需要进一步进行多中心长期随访研究。(参考文献略,需要请留言)
END
平台内容包括原创、编辑整理和转载。我们尊重原创,所有转载内容均标明来源,如尽力查核仍未能发现出处则标明“转自网络”。如有疏漏,欢迎原作者及时联络署名或删除。
预览时标签不可点收录于话题#个上一篇下一篇